Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202405983, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699982

RESUMEN

On-surface synthesis has become a prominent method for growing low-dimensional carbon-based nanomaterials on metal surfaces. However, the necessity of decoupling organic nanostructures from metal substrates to exploit their properties requires either transfer methods or new strategies to perform reactions directly on inert surfaces. The use of on-surface light-induced reactions directly on semiconductor/insulating surfaces represents an alternative approach to address these challenges. Here, exploring the photochemical activity of different organic molecules on a SnSe semiconductor surface under ultra-high vacuum, we present a novel on-surface light-induced reaction. The selective photodissociation of the anhydride group is observed, releasing CO and CO2. Moreover, we rationalize the relationship between the photochemical activity and the π-conjugation of the molecular core. The different experimental behaviour of two model anhydrides was elucidated by theoretical calculations, showing how the molecular structure influences the distribution of the excited states. Our findings open new pathways for on-surface synthesis directly on technologically relevant substrates.

2.
ACS Nano ; 18(13): 9576-9583, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38518264

RESUMEN

Precise control of multiple spin states on the atomic scale presents a promising avenue for designing and realizing magnetic switches. Despite substantial progress in recent decades, the challenge of achieving control over multiconfigurational reversible switches in low-dimensional nanostructures persists. Our work demonstrates multiple, fully reversible plasmon-driven spin-crossover switches in a single π-d metal-organic chain suspended between two electrodes. The plasmonic nanocavity stimulated by external visible light allows for reversible spin crossover between low- and high-spin states of different cobalt centers within the chain. We show that the distinct spin configurations remain stable for minutes under cryogenic conditions and can be nonperturbatively detected by conductance measurements. This multiconfigurational plasmon-driven spin-crossover demonstration extends the available toolset for designing optoelectrical molecular devices based on SCO compounds.

3.
Chirality ; 36(2): e23642, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38384155

RESUMEN

Helicenes represent an important class of chiral organic material with promising optoelectronic properties. Hence, functionalization of surfaces with helicenes is a key step toward new organic materials devices. The deposition of a heterohelicene containing two furano groups and two hydroxyl groups onto copper(111) surface in ultrahigh vacuum leads to different adsorbate modifications. At low coverage and low temperature, the molecules tend to lie on the surface in order to maximize van der Waals contact with the substrate. Thermal treatment leads to deprotonation of the hydroxyl groups and in part into a reorientation from lying into a standing adsorbate mode.

4.
J Phys Chem C Nanomater Interfaces ; 127(47): 23000-23009, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38053624

RESUMEN

In the present report, homochiral hydrogen-bonded assemblies of heavily N-doped (C9H6N6) heterocyclic triimidazole (TT) molecules on an Ag(111) substrate were investigated using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) techniques. The planar and prochiral TT molecules, which exhibit a threefold rotation symmetry and lack mirror symmetry when assembled on the substrate, carry multiple hydrogen-bonding donor and acceptor functionalities, inevitably leading to the formation of hexameric two-dimensionally extended assemblies that can be either homo- (RR/SS) or heterochiral (RS). Experimental STM data showing well-ordered homochiral domains and experimental LEED data are consistent with simulations assuming the R19.1° overlayer on the Ag(111) lattice. Importantly, we report the unexpected coincidence of spontaneous resolution with the condensation of neighboring islands in adjacent "Janus pairs". The islands are connected by a characteristic fault zone, an observation that we discuss in the context of the fairly symmetric molecule and its propensity to compromise and benefit from interisland bonding at the expense of lattice mismatches and strain in the defect zone. We relate this to the close to triangular shape and the substantial but weak bonding scheme beyond van der Waals (vdW) of the TT molecules, which is due to the three N-containing five-membered imidazole rings. Density functional theory (DFT) calculations show clear energetic differences between homochiral and heterochiral pairwise interactions, clearly supporting the experimental results.

5.
Nanoscale ; 15(46): 18871-18882, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37969003

RESUMEN

Two-dimensional (2D) materials are of great interest in many fields due to their astonishing properties at an atomic level thickness. Many fundamentally different methods to synthesize 2D materials, such as exfoliation or chemical vapor deposition (CVD), have been reported. Despite great efforts and progress to investigate and improve each synthesis method, mainly to increase the yield and quality of the synthesized 2D materials, most approaches still involve some compromise. Herein, we systematically investigate a chemical vapor deposition (CVD) process to synthesize molybdenum disulfide (MoS2) single layer flakes using sodium molybdate (Na2MoO4), deposited on a silica (SiO2/Si) substrate by spin-coating its aqueous solution, as the molybdenum source and sulfur powder as sulfur source, respectively. The focus lies on the impact of oxygen (O2) in the gas flow and temperature-time-profile on reaction process and product quality. Atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to investigate MoS2 flakes synthesized under different exposure times of O2 and with various temperature-time-profiles. This detailed study shows that the MoS2 flakes are formed within the first few minutes of synthesis and elaborates on the necessity of O2 in the gas flow, as well as drawbacks of its presence. In addition, the applied temperature-time-profile highly affects the ability to detach MoS2 flakes from the growth substrate when immersed in water, but it has no impact on the flake.

6.
Chemistry ; 29(28): e202300134, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36856040

RESUMEN

The on-surface dimerization into bis(hexahelicene) on a gold(111) surface has been studied by means of scanning tunneling microscopy and time-of-flight secondary mass spectrometry. C-C Ullmann coupling of (rac)-2-bromo-hexahelicene leads to formation of the (M,M)- and (P,P)-diastereomers of 2,2'-bis(hexahelicene), whilst formation of the (M,P)-diastereomer is not observed. Upon cooling, the bis(hexahelicene) aggregates into an ordered two-dimensional lattice with partly randomly distributed enantiomers. The highly specific diastereomeric coupling is explained by the surface alignment of educt in combination with the strong steric overcrowding in a possible surface-confined (M,P)-product.

7.
ACS Nano ; 16(10): 16402-16413, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36200735

RESUMEN

One-dimensional metal-organic chains often possess a complex magnetic structure susceptible to modification by alteration of their chemical composition. The possibility to tune their magnetic properties provides an interesting playground to explore quasi-particle interactions in low-dimensional systems. Despite the great effort invested so far, a detailed understanding of the interactions governing the electronic and magnetic properties of the low-dimensional systems is still incomplete. One of the reasons is the limited ability to characterize their magnetic properties at the atomic scale. Here, we provide a comprehensive study of the magnetic properties of metal-organic one-dimensional (1D) coordination polymers consisting of 2,5-diamino-1,4-benzoquinonediimine ligands coordinated with Co or Cr atoms synthesized under ultrahigh-vacuum conditions on a Au(111) surface. A combination of integral X-ray spectroscopy with local-probe inelastic electron tunneling spectroscopy corroborated by multiplet analysis, density functional theory, and inelastic electron tunneling simulations enables us to obtain essential information about their magnetic structures, including the spin magnitude and orientation at the magnetic atoms, as well as the magnetic anisotropy.

8.
Nano Lett ; 21(19): 8266-8273, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34569802

RESUMEN

Single atom magnets offer the possibility of magnetic information storage in the most fundamental unit of matter. Identifying the parameters that control the stability of their magnetic states is crucial to design novel quantum magnets with tailored properties. Here, we use X-ray absorption spectroscopy to show that the electronic configuration of dysprosium atoms on MgO(100) thin films can be tuned by the proximity of the metal Ag(100) substrate onto which the MgO films are grown. Increasing the MgO thickness from 2.5 to 9 monolayers induces a change in the dysprosium electronic configuration from 4f9 to 4f10. Hysteresis loops indicate long magnetic lifetimes for both configurations, however, with a different field-dependent magnetic stability. Combining these measurements with scanning tunneling microscopy, density functional theory, and multiplet calculations unveils the role of the adsorption site and charge transfer to the substrate in determining the stability of quantum states in dysprosium single atom magnets.

9.
Chemistry ; 27(40): 10251-10254, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34042228

RESUMEN

The chiral self-assembly of trispentahelicene propellers on a gold surface has been investigated in ultrahigh vacuum by means of scanning tunneling microscopy and time-of-flight secondary ion mass spectrometry. The trispentahelicene propellers aggregate into mirror domains with an enantiomeric ratio of 2 : 1. Thermally induced cyclodehydrogenation leads to planarization into nanographenes, which self-assemble into closed-packed layers with two different azimuths. Further treatment induces in part dimerization and trimerization by intermolecular cyclodehydrogenation.

10.
Angew Chem Int Ed Engl ; 60(15): 8446-8449, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33440054

RESUMEN

Hydrogen plays important roles in the on-surface synthesis of carbon-based materials in ultra-high vacuum. The complex interplay between hydrogen and surface-adsorbed polycyclic aromatic hydrocarbons (PAHs) is tracked by in situ time-of-flight secondary ion mass spectrometry (ToF-SIMS) combined with isotope labeling. In situ deuterium labeling of prototypical PAHs, coronene (CR) and 7-armchair graphene nanoribbons (GNRs), on Au(111) is achieved by annealing either in D2 gas or in the vapor of perdeuterio-acenaphthene. By following the mass spectra of in situ deuterated CR mixed with hydrogen-CR, it is demonstrated that PAHs adsorbed at hot Au(111) surfaces continuously exchange hydrogen atoms. Also, D2 present during the Ullmann coupling step leads to incorporation of deuterium and to shorter GNRs.

11.
RSC Adv ; 11(16): 9421-9425, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35423455

RESUMEN

We have studied the morphology of Er(trensal) single-ion molecular magnets adsorbed on graphene/Ru(0001) using X-ray photoemission electron microscopy (X-PEEM). By exploiting the elemental contrast at the erbium M5 edge we observe the formation of molecular islands of homogeneous height with a lateral size of several micrometers. The graphene/Ru(0001) substrate exhibits two different signal levels in bright-field low-energy electron microscopy (LEEM) and in X-PEEM, which are ascribed to the presence of small-angle rotational domains of the graphene lattice. We find that the Er(trensal) molecules form islands solely on the bright areas, while the remaining dark areas are empty. Our results are important for the growth and study of the molecule-inorganic hybrid approach in spintronics schemes.

12.
Angew Chem Int Ed Engl ; 60(1): 439-445, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32886405

RESUMEN

Recently π-d conjugated coordination polymers have received a lot of attention owing to their unique material properties, although synthesis of long and defect-free polymers remains challenging. Herein we introduce a novel on-surface synthesis of coordination polymers with quinoidal ligands under ultra-high vacuum conditions, which enables formation of flexible coordination polymers with lengths up to hundreds of nanometers. Moreover, this procedure allows the incorporation of different transition-metal atoms with four- or two-fold coordination. Remarkably, the two-fold coordination mode revealed the formation of wires constituted by (electronically) independent 12-membered antiaromatic macrocycles linked together through two C-C single bonds.

13.
ACS Nano ; 14(12): 16735-16742, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-32687321

RESUMEN

Functionalization of surfaces with derivatives of Buckminsterfullerene fragment molecules seems to be a promising approach toward bottom-up fabrication of carbon nanotube modified electrode surfaces. The modification of a Cu(100) surface with molecules of the buckybowl pentaindenocorannulene has been studied by means of scanning tunneling microscopy, carbon monoxide-modified noncontact atomic force microscopy, time-of-flight secondary mass spectrometry, and quantum chemical calculations. Two different adsorbate modes are identified, in which the majority is oriented such that the bowl cavity points away from the surface and the convex side is partially immersed into a four-atom vacancy in the Cu(100) surface. A minority is oriented such that the convex side points away from the surface with the five benzo tabs oriented basically parallel to the surface. Thermal annealing leads to hydrogenation and planarization of the molecules in two steps under specific C-C bond cleavage. The benzo tabs of the convex side up species serve as a hydrogen source. The final product has an open-shell electron structure that is quenched on the surface.

14.
Adv Sci (Weinh) ; 6(22): 1901736, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31763154

RESUMEN

The stability of magnetic information stored in surface adsorbed single-molecule magnets is of critical interest for applications in nanoscale data storage or quantum computing. The present study combines X-ray magnetic circular dichroism, density functional theory and magnetization dynamics calculations to gain deep insight into the substrate dependent relevant magnetization relaxation mechanisms. X-ray magnetic circular dichroism reveals the opening of a butterfly-shaped magnetic hysteresis of DyPc2 molecules on magnesium oxide and a closed loop on the bare silver substrate, while density functional theory shows that the molecules are only weakly adsorbed in both cases of magnesium oxide and silver. The enhanced magnetic stability of DyPc2 on the oxide film, in conjunction with previous experiments on the TbPc2 analogue, points to a general validity of the magnesium oxide induced stabilization effect. Magnetization dynamics calculations reveal that the enhanced magnetic stability of DyPc2 and TbPc2 on the oxide film is due to the suppression of two-phonon Raman relaxation processes. The results suggest that substrates with low phonon density of states are beneficial for the design of spintronics devices based on single-molecule magnets.

15.
Chemphyschem ; 20(18): 2354-2359, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31158317

RESUMEN

The growth of carbon layers, defective graphene, and graphene by deposition of polycyclic aromatic hydrocarbons (PAHs) on Cu(111) is studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy. Two different PAHs are used as starting materials: the buckybowl pentaindenocorannulene (PIC) which contains pentagonal rings and planar coronene (CR). For both precursors, with increasing sample temperature during deposition, porous carbon aggregates (350 °C), dense carbon layers (400-450 °C), disordered defective graphene (500 °C-550 °C), and extended graphene (≥600 °C) are obtained. No significant differences for defective graphene grown from PIC and CR are observed. C 1s X-ray photoelectron spectra of PIC and CR derived samples grown at 350-550 °C exhibit a characteristic C-Cu low binding energy component. Preparation at ≥600 °C eliminates this C-Cu species and only C-C bonded carbon remains.

16.
Chem Sci ; 10(10): 2998-3004, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30996879

RESUMEN

The on-surface synthesis of bisheptahelicene by Ullmann coupling of 9-bromoheptahelicene on Au(111) and its temperature-induced dehydrogenation is studied using temperature-programmed reaction spectroscopy and time-of-flight secondary ion mass spectrometry. Specific dehydrogenation products of bisheptahelicene after loss of 6, 8 and 10 hydrogen atoms are identified, corresponding to molecules having undergone Diels-Alder transformations and intramolecular C-C coupling reactions. By combining with atomic hydrogen produced by dehydrogenation, the Ullmann coupling side-product bromine desorbs as HBr. H2 desorption emerges only after all Br has desorbed. Such characteristic behavior is explained by a kinetic model which explicitly considers the coverage of transient atomic H on the surface. Heating experiments performed with saturated layers of different Br-containing molecules reveal that the onset of HBr desorption depends strictly on the dehydrogenation step and therefore on the structure of the molecules.

17.
Sci Adv ; 5(2): eaav4489, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30801017

RESUMEN

Stable, single-nanometer thin, and free-standing two-dimensional layers with controlled molecular architectures are desired for several applications ranging from (opto-)electronic devices to nanoparticle and single-biomolecule characterization. It is, however, challenging to construct these stable single molecular layers via self-assembly, as the cohesion of those systems is ensured only by in-plane bonds. We herein demonstrate that relatively weak noncovalent bonds of limited directionality such as dipole-dipole (-CN⋅⋅⋅NC-) interactions act in a synergistic fashion to stabilize crystalline monomolecular layers of tetrafunctional calixarenes. The monolayers produced, demonstrated to be free-standing, display a well-defined atomic structure on the single-nanometer scale and are robust under a wide range of conditions including photon and electron radiation. This work opens up new avenues for the fabrication of robust, single-component, and free-standing layers via bottom-up self-assembly.

18.
RSC Adv ; 9(59): 34421-34429, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-35530011

RESUMEN

We perform on-surface synthesis of single-ion molecular magnets on an Ag(111) surface and characterize their morphology, chemistry, and magnetism. The first molecule we synthesize is TbPc2 to enable comparison with chemically synthesized and subsequently surface adsorbed species. We demonstrate the formation of TbPc2 with a yield close to 100% and show that on-surface synthesis leads to identical magnetic and morphological properties compared to the previously studied chemically synthesized species. Moreover, exposure of the surface adsorbed TbPc2 molecules to air does not modify their magnetic and morphological properties. To demonstrate the versatility of our approach, we synthesize novel Tb double deckers using tert-butyl-substituted phthalocyanine (tbu-2H-Pc). The Tb(tbu-Pc)2 molecules exhibit magnetic hysteresis and therefore are the first purely on-surface synthesized single ion magnet.

19.
J Am Chem Soc ; 140(45): 15186-15189, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30383363

RESUMEN

The comparison of the self-assembly 9,9'-bisheptahelicene on the Au(111) surface, studied with scanning tunneling microscopy, with the self-assembly of the same species obtained by on-surface synthesis via Ullmann coupling from 9-bromoheptahelicene reveals a diastereomeric excess for the ( M, P)- meso-form of 50%. The stereoselectivity is explained by a topochemical effect, in which the surface-alignment of the starting material and the organometallic intermediate sterically favor the ( M, P)-transition state over the homochiral transition states.

20.
Chem Commun (Camb) ; 54(57): 7948-7951, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-29955753

RESUMEN

The on-surface Ullmann coupling of 2,3-dibromo[4]helicene molecules is studied on Au(111) and Cu(111) surfaces. Bis-helicene and tris-helicene are identified with scanning tunnelling microscopy and X-ray photoelectron spectroscopy as reaction products. The produced star-shaped tris-helicenes self-assemble on Au(111) spontaneously into large homochiral domains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...